
All-In-One / Gray Hat Hacking: The Ethical Hacker’s Handbook
v

Gray Hat
Hacking

The Ethical Hacker’s

Handbook
Sixth Edition

Dr. Allen Harper, Ryan Linn, Stephen Sims,
Michael Baucom, Daniel Fernandez,

Huáscar Tejeda, Moses Frost

New York Chicago San Francisco
Athens London Madrid Mexico City

Milan New Delhi Singapore Sydney Toronto

All-In-One / Gray Hat Hacking: The Ethical Hacker’s Handbook
vi

McGraw Hill books are available at special quantity discounts to use as premiums and sales promotions,
or for use in corporate training programs. To contact a representative, please visit the Contact Us pages at
www.mhprofessional.com.

Gray Hat Hacking: The Ethical Hacker’s Handbook, Sixth Edition

Copyright © 2022 by McGraw Hill. All rights reserved. Printed in the United States of America. Except as
permitted under the Copyright Act of 1976, no part of this publication may be reproduced or distributed in
any form or by any means, or stored in a database or retrieval system, without the prior written permission of
publisher, with the exception that the program listings may be entered, stored, and executed in a computer
system, but they may not be reproduced for publication.

All trademarks or copyrights mentioned herein are the possession of their respective owners and McGraw Hill
makes no claim of ownership by the mention of products that contain these marks.

1 2 3 4 5 6 7 8 9 LCR 26 25 24 23 22

Library of Congress Control Number: 2021925396

ISBN 978-1-264-26894-8
MHID 1-264-26894-7

Information has been obtained by McGraw Hill from sources believed to be reliable. However, because of the possibility of human or
mechanical error by our sources, McGraw Hill, or others, McGraw Hill does not guarantee the accuracy, adequacy, or completeness
of any information and is not responsible for any errors or omissions or the results obtained from the use of such information.

Sponsoring Editor
Wendy Rinaldi

Editorial Supervisor
Janet Walden

Project Manager
Warishree Pant,

KnowledgeWorks Global Ltd.

Acquisitions Coordinator
Emily Walters

Technical Editor
Heather Linn

Copy Editor
Bart Reed

Proofreader
Rachel Fogelberg

Indexer
Ted Laux

Production Supervisor
Thomas Somers

Composition
KnowledgeWorks Global Ltd.

Illustration
KnowledgeWorks Global Ltd.

Art Director, Cover
Jeff Weeks

All-In-One / Gray Hat Hacking: The Ethical Hacker’s Handbook
ix

 ABOUT THE AUTHORS

Dr. Allen Harper, CISSP, retired in 2007 from the military as a Marine Corps Officer
after a tour in Iraq. He has more than 30 years of IT/security experience. He holds a
PhD in IT with a focus on information assurance and security from Capella, an MS in
computer science from the Naval Postgraduate School, and a BS in computer engineer-
ing from North Carolina State University. In 2004, Allen led the development of the
GEN III Honeywall CD-ROM, called roo, for the Honeynet Project. Since then, he
has worked as a security consultant for many Fortune 500 and government entities. His
interests include the Internet of Things, reverse engineering, vulnerability discovery, and
all forms of ethical hacking. Allen was the founder of N2NetSecurity, Inc., served as the
EVP and chief hacker at Tangible Security, program director at Liberty University, and
now serves as EVP of cybersecurity at T-Rex Solutions, LLC, in Greenbelt, Maryland.

Ryan Linn, CISSP, CSSLP, OSCP, OSCE, GREM, has over 20 years in the security
industry, ranging from systems programmer to corporate security to leading a global
cybersecurity consultancy. Ryan has contributed to a number of open source projects,
including Metasploit, the Browser Exploitation Framework (BeEF), and Ettercap. Ryan
participates in Twitter as @sussurro, and he has presented his research at numerous
security conferences, including Black Hat, DEF CON, Thotcon, and Derbycon, and has
provided training in attack techniques and forensics worldwide.

Stephen Sims is an industry expert with over 15 years of experience in information
technology and security. Stephen currently works out of the San Francisco Bay Area as a
consultant. He has spent many years performing security architecture, exploit develop-
ment, reverse engineering, and penetration testing for various Fortune 500 companies, and
he has discovered and responsibly disclosed a wide range of vulnerabilities in commercial
products. Stephen has an MS in information assurance from Norwich University and cur-
rently leads the Offensive Operations curriculum at the SANS Institute. He is the author
of the SANS Institute’s only 700-level course, SEC760: Advanced Exploit Development
for Penetration Testers, which concentrates on complex heap overflows, patch diffing, and
client-side exploits. He holds the GIAC Security Expert (GSE) certification as well as the
CISA, Immunity NOP, and many others. In his spare time, Stephen enjoys snowboarding
and writing music.

Michael Baucom has over 25 years of industry experience, ranging from embedded
systems development to leading the product security and research division at Tangible
Security. With more than 15 years of security experience, he has performed security
assessments of countless systems across a multitude of areas, including medical, indus-
trial, networking, and consumer electronics. Michael has been a trainer at Black Hat,
speaker at several conferences, and both an author and technical editor for Gray Hat
Hacking: The Ethical Hacker’s Handbook. His current interests are in embedded system
security and development.

All-In-One / Gray Hat Hacking: The Ethical Hacker’s Handbook
x

Huáscar Tejeda is the co-founder and CEO of F2TC Cyber Security. He is a seasoned,
thoroughly experienced cybersecurity professional, with more than 20 years and notable
achievements in IT and telecommunications, developing carrier-grade security solutions
and business-critical components for multiple broadband providers. He is highly skilled
in security research, penetration testing, Linux kernel hacking, software development,
and embedded hardware design. Huáscar is also a member of the SANS Latin America
Advisory Group, SANS Purple Team Summit Advisory Board, and contributing author
of the SANS Institute’s most advanced course, SEC760: Advanced Exploit Development
for Penetration Testers.

Daniel Fernandez is a security researcher with over 15 years of industry experience.
Over his career, he has discovered and exploited vulnerabilities in a vast number of
targets. During the last years, his focus had shifted to hypervisors, where he has found
and reported bugs in products such as Microsoft Hyper-V. He has worked at several
information security companies, including Blue Frost Security GmbH and Immunity,
Inc. Recently, he co-founded TACITO Security. When not breaking software, Daniel
enjoys training his working dogs.

Moses Frost started his career in designing and implementing large-scale networks
around the year 2000. He has worked with computers in some form or another since the
early 1990s. His past employers include TLO, Cisco Systems, and McAfee. At Cisco Sys-
tems, he was a lead architect for its Cyber Defense Clinics. This free information security
dojo was used in educating individuals from the high school and university levels as well
as in many enterprises. At Cisco, he was asked to work on crucial security projects such
as industry certifications. Moses is an author and senior instructor at the SANS Institute.
His technology interests include web app penetration testing, cloud penetration testing,
and red team operations. He currently works as a red team operator at GRIMM.

Disclaimer: The views expressed in this book are those of the authors and not of the
U.S. government or any company mentioned herein.

About the Contributor
Jaime Geiger currently works for GRIMM Cyber as a senior software vulnerability
research engineer and for SANS as a certified instructor. He is also an avid snowboarder,
climber, sailor, and skateboarder.

About the Technical Editor
Heather Linn is a red teamer, penetration tester, threat hunter, and cybersecurity strate-
gist with more than 20 years of experience in the security industry. During her career, she
has consulted as a penetration tester and digital forensics investigator and has operated
as a senior red team engineer inside Fortune 50 environments. In addition to being an
accomplished technical editor, Heather has written and delivered training for multiple
security conferences and organizations, including Black Hat USA and Girls Who Code,
and she has published exam guides for the CompTIA Pentest+ certification. She holds
or has held various certifications, including OSCP, CISSP, GREM, GCFA, GNFA, and
CompTIA Pentest+.

CHAPTER

369

All-In-One / Gray Hat Hacking: The Ethical Hacker’s Handbook
Chapter 18

Next-Generation
Patch Exploitation
In this chapter, we cover the following topics:

•	 Application and patch diffing
•	 Binary diffing tools
•	 Patch management process
•	 Real-world diffing

In response to the lucrative growth of vulnerability research, the interest level in the
binary diffing of patched vulnerabilities continues to rise. Privately disclosed and inter-
nally discovered vulnerabilities typically offer limited technical details publicly. The more
details released, the easier it is for others to locate the vulnerability. Without these details,
patch diffing allows a researcher to quickly identify the code changes related to the miti-
gation of a vulnerability, which can sometimes lead to successful weaponization. The fail-
ure to patch quickly in many organizations presents a lucrative opportunity for offensive
security practitioners.

Introduction to Binary Diffing
When changes are made to compiled code such as libraries, applications, and drivers, the
delta between the patched and unpatched versions can offer an opportunity to discover
vulnerabilities. At its most basic level, binary diffing is the process of identifying the dif-
ferences between two versions of the same file, such as version 1.2 and 1.3. Arguably, the
most common target of binary diffs are Microsoft patches; however, this can be applied
to many different types of compiled code. Various tools are available to simplify the
process of binary diffing, thus quickly allowing an examiner to identify code changes
between versions of a disassembled file.

Application Diffing
New versions of applications are commonly released in an ongoing manner. The
reasoning behind the release can include the introduction of new features, code
changes to support new platforms or kernel versions, leveraging new compile-time
security controls such as canaries or Control Flow Guard (CFG), and the fixing of

18

Gray Hat Hacking: The Ethical Hacker’s Handbook

370

All-In-One / Gray Hat Hacking: The Ethical Hacker’s Handbook
Chapter 18

vulnerabilities. Often, the new version can include a combination of the aforemen-
tioned reasoning. The more changes to the application code, the more difficult it can
be to identify those related to a patched vulnerability. Much of the success in identi-
fying code changes related to vulnerability fixes is dependent on limited disclosures.
Many organizations choose to release minimal information as to the nature of a secu-
rity patch. The more clues we can obtain from this information, the more likely we
are to discover the vulnerability. If a disclosure announcement states that there is a
vulnerability in the handling and processing of JPEG files, and we identify a changed
function named RenderJpegHeaderType, we can infer it is related to the patch. These
types of clues will be shown in real-world scenarios later in the chapter.

A simple example of a C code snippet that includes a vulnerability is shown here:

/*Unpatched code that includes the unsafe gets() function. */
int get_Name(){
 char name[20];

printf("\nPlease state your name: ");
gets(name);
printf("\nYour name is %s.\n\n", name);
return 0;

}

And here’s the patched code:

/*Patched code that includes the safer fgets() function. */
int get_Name(){
 char name[20];

printf("\nPlease state your name: ");
fgets(name, sizeof(name), stdin);
printf("\nYour name is %s.\n\n", name);
return 0;

}

The problem with the first snippet is the use of the gets() function, which offers no
bounds checking, resulting in a buffer overflow opportunity. In the patched code, the
function fgets() is used, which requires a size argument, thus helping to prevent a buffer
overflow. The fgets() function is considered deprecated and is likely not the best choice
due to its inability to properly handle null bytes, such as in binary data; however, it is a
better choice than gets() if used properly. We will take a look at this simple example later
on through the use of a binary diffing tool.

Patch Diffing
Security patches, such as those from Microsoft and Oracle, are some of the most lucrative
targets for binary diffing. Microsoft has historically had a well-planned patch manage-
ment process that follows a monthly schedule, where patches are released on the second
Tuesday of each month. The files patched are most often dynamic link libraries (DLLs)
and driver files, though plenty of other file types also receive updates, such as .exe files.
Many organizations do not patch their systems quickly, leaving open an opportunity for
attackers and penetration testers to compromise these systems with publicly disclosed or
privately developed exploits through the aid of patch diffing. Starting with Windows 10,

Chapter 18: Next-Generation Patch Exploitation

371

All-In-One / Gray Hat Hacking: The Ethical Hacker’s Handbook
Chapter 18

Microsoft is much more aggressive with patching requirements, making the deferral of
updates challenging. Depending on the complexity of the patched vulnerability, and the
difficulty in locating the relevant code, a working exploit can sometimes be developed
quickly in the days or weeks following the release of the patch. Exploits developed after
reverse-engineering security patches are commonly referred to as 1-day or n-day exploits.
This is different from 0-day exploits, where a patch is unavailable at the time it is discov-
ered in the wild.

As we move through this chapter, you will quickly see the benefits of diffing code
changes to drivers, libraries, and applications. Though not a new discipline, binary diff-
ing has only continued to gain the attention of security researchers, hackers, and vendors
as a viable technique to discover vulnerabilities and profit. The price tag on a 1-day
exploit is not typically as high as a 0-day exploit; however, it is not uncommon to see
attractive payouts for highly sought-after exploits. As most vulnerabilities are privately
disclosed with no publicly available exploit, exploitation framework vendors desire to
have more exploits tied to these privately disclosed vulnerabilities than their competitors.

Binary Diffing Tools
Manually analyzing the compiled code of large binaries through the use of a disassembler
such as the Interactive Disassembler (IDA) Pro or Ghidra can be a daunting task to even
the most skilled researcher. Through the use of freely available and commercially avail-
able binary diffing tools, the process of zeroing in on code of interest related to a patched
vulnerability can be simplified. Such tools can save hundreds of hours of time spent
reversing code that may have no relation to a sought-after vulnerability. Here are some of
the most widely known binary diffing tools:

• Zynamics BinDiff (free) Acquired by Google in early 2011, Zynamics BinDiff
is available at www.zynamics.com/bindiff.html. It requires a licensed version of
IDA (or Ghidra).

• turbodiff (free) Developed by Nicolas Economou of Core Security, turbodiff is
available at https://www.coresecurity.com/core-labs/open-source-tools/turbodiff-
cs. It can be used with the free version of IDA 4.9 or 5.0. If the links are not
working, try here: https://github.com/nihilus/turbodiff.

• DarunGrim/binkit (free) Developed by Jeong Wook Oh (Matt Oh), DarunGrim
is available at https://github.com/ohjeongwook/binkit. It requires a recent licensed
version of IDA.

• Diaphora (free) Developed by Joxean Koret. Diaphora is available at https://
github.com/joxeankoret/diaphora. Only the most recent versions of IDA are
officially supported.

Each of these tools works as a plug-in to IDA (or Ghidra if noted), using various tech-
niques and heuristics to determine the code changes between two versions of the same
file. You may experience different results when using each tool against the same input
files. Each of the tools requires the ability to access IDA Database (.idb) files, hence the

P
A

R
T

 III
P

A
R

T
 III

Gray Hat Hacking: The Ethical Hacker’s Handbook

372

All-In-One / Gray Hat Hacking: The Ethical Hacker’s Handbook
Chapter 18

requirement for a licensed version of IDA, or the free version with turbodiff. For the
examples in this chapter, we will use the commercial BinDiff tool as well as turbodiff
because it works with the free version of IDA 5.0 that can still be found online at various
sites, such as at https://www.scummvm.org/news/20180331/. This allows those without
a commercial version of IDA to be able to complete the exercises. The only tools from
the list that are actively maintained are Diaphora and BinDiff. The authors of each of
these should be highly praised for providing such great tools that save us countless hours
trying to find code changes.

BinDiff
As previously mentioned, in early 2011 Google acquired the German software company
Zynamics, with well-known researcher Thomas Dullien, also known as Halvar Flake,
who served as the head of research. Zynamics was widely known for the tools BinDiff and
BinNavi, both of which aid in reverse engineering. After the acquisition, Google greatly
reduced the price of these tools to one-tenth their original price, making them much
more accessible. In March 2016, Google announced that, going forward, BinDiff would
be free. The project is actively maintained by Christian Blichmann, with BinDiff 7 being
the most recent version at the time of this writing. BinDiff is often praised as one of the
best tools of its kind, providing deep analysis of block and code changes. As of mid-2021,
BinDiff support for Ghidra and Binary Ninja, another great disassembler, was in beta.

BinDiff 7 is delivered as a Windows Installer Package (.msi), Debian Software Package
file (.deb), or a Mac OS X Disk Image file (.dmg). Installation requires nothing more
than a few clicks, a licensed copy of IDA Pro, and the required version of the Java Run-
time Environment. To use BinDiff, you must allow IDA to perform its auto-analysis on
the two files you would like to compare and save the IDB files. Once this is complete,
and with one of the files open inside of IDA, you press ctrl-6 to bring up the BinDiff
GUI, as shown here:

The next step is to click the Diff Database button and select the other IDB file for
the diff. Depending on the size of the files, it may take a minute or two to finish. Once
the diff is complete, some new tabs will appear in IDA, including Matched Functions,
Primary Unmatched, and Secondary Unmatched. The Matched Functions tab contains

Chapter 18: Next-Generation Patch Exploitation

373

All-In-One / Gray Hat Hacking: The Ethical Hacker’s Handbook
Chapter 18

functions that exist in both files, which may or may not include changes. Each function
is scored with a value between 0 and 1.0 in the Similarity column, as shown next. The
lower the value, the more the function has changed between the two files. As stated by
Zynamics/Google in relation to the Primary Unmatched and Secondary Unmatched
tabs, “The first one displays functions that are contained in the currently opened data-
base and were not associated to any function of the diffed database, while the Secondary
Unmatched subview contains functions that are in the diffed database but were not
associated to any functions in the first.”1

It is important to diff the correct versions of the file to get the most accurate results.
When going to Microsoft TechNet to acquire patches published before April 2017, you’ll
see a column on the far right titled “Updates Replaced.” The process of acquiring patches
starting in April 2017 is addressed shortly. Going to the URL at that location (Updates
Replaced) takes you to the previous most recent update to the file being patched. A file
such as jscript9.dll is patched almost every month. If you diff a version of the file from
several months earlier with a patch that just came out, the number of differences between
the two files will make analysis very difficult. Other files are not patched very often, so
clicking the aforementioned Updates Replaced link will take you to the last update to
the file in question so you can diff the proper versions. Once a function of interest is
identified with BinDiff, a visual diff can be generated either by right-clicking the desired
function from the Matched Functions tab and selecting View Flowgraphs or by clicking
the desired function and pressing ctrl-e. The following is an example of a visual diff.
Note that it is not expected that you can read the disassembly because it is zoomed out
to fit onto the page.

P
A

R
T

 III
P

A
R

T
 III

Gray Hat Hacking: The Ethical Hacker’s Handbook

374

All-In-One / Gray Hat Hacking: The Ethical Hacker’s Handbook
Chapter 18

turbodiff
The other tool we will cover in this chapter is turbodiff. This tool was selected due to its
ability to run with the free version of IDA 5.0. DarunGrim and Diaphora are also great
tools; however, a licensed copy of IDA is required to use them, making it impossible for
those reading along to complete the exercises in this chapter without already owning or
purchasing a licensed copy. DarunGrim and Diaphora are both user friendly and easy to
set up with IDA. Literature is available to assist with installation and usage (see the “For
Further Reading” section at the end of this chapter). Diffing tools that work with other
disassemblers, such as Ghidra, are another alternative.

As previously mentioned, the turbodiff plug-in can be acquired from the http://
corelabs.coresecurity.com/ website and is free to download and use under the GPLv2
license. The latest stable release is Version 1.01b_r2, released on December 19, 2011.
To use turbodiff, you must load the two files to be diffed one at a time into IDA. Once
IDA has completed its auto-analysis of the first file, you press ctrl-f11 to bring up
the turbodiff pop-up menu. From the options when you’re first analyzing a file, choose
“take info from this idb” and click OK. Repeat the same steps against the other file to be
included in the diff. Once this has been completed against both files to be diffed, press
ctrl-f11 again, select the option “compare with…,” and then select the other IDB file.
The following window should appear.

Chapter 18: Next-Generation Patch Exploitation

375

All-In-One / Gray Hat Hacking: The Ethical Hacker’s Handbook
Chapter 18

In the category column you can see labels such as identical, suspicious +, suspicious ++,
and changed. Each label has a meaning and can help the examiner zoom in on the most
interesting functions, primarily the ones labeled suspicious + and suspicious ++. These
labels indicate that the checksums in one or more of the blocks within the selected function
are mismatched, as well as whether or not the number of instructions has changed. When
you double-click a desired function name, a visual diff is presented, with each function
appearing in its own window, as shown here:

Lab 18-1: Our First Diff

NOTE Copy the two ELF binary files name and name2 from Lab1 of the
book’s repository and place them in the folder C:\grayhat\app_diff\. You will
need to create the app_diff subfolder. If you do not have a C:\grayhat folder,
you can create one now, or you can use a different location.

In this lab, you will perform a simple diff against the code previously shown in the
“Application Diffing” section. The ELF binary files name and name2 are to be compared.
The name file is the unpatched one, and name2 is the patched one. You must first start
up the free IDA 5.0 application you previously installed. Once it is up and running, go

P
A

R
T

 III
P

A
R

T
 III

Gray Hat Hacking: The Ethical Hacker’s Handbook

376

All-In-One / Gray Hat Hacking: The Ethical Hacker’s Handbook
Chapter 18

to File | New, select the Unix tab from the pop-up, and click the ELF option on the left,
as shown here, and then click OK.

Navigate to your C:\grayhat\app_diff\ folder and select the file “name.” Accept the
default options that appear. IDA should quickly complete its auto-analysis, defaulting to
the main() function in the disassembly window, as shown next.

Chapter 18: Next-Generation Patch Exploitation

377

All-In-One / Gray Hat Hacking: The Ethical Hacker’s Handbook
Chapter 18

Press ctrl-f11 to bring up the turbodiff pop-up. If it does not appear, go back and
ensure you properly copied over the necessary files for turbodiff. With the turbodiff win-
dow on the screen, select the option “take info from this idb” and click OK, followed by
another OK. Next, go to File | New, and you will get a pop-up box asking if you would
like to save the database. Accept the defaults and click OK. Repeat the steps of selecting
the Unix tab | ELF Executable, and then click OK. Open up the name2 ELF binary file
and accept the defaults. Repeat the steps of bringing up the turbodiff pop-up and choos-
ing the option “take info from this idb.”

Now that you have completed this for both files, press ctrl-f11 again, with the name2
file still open in IDA. Select the option “compare with…” and click OK. Select the name
.idb file and click OK, followed by another OK. The following box should appear
(you may have to sort by category to replicate the exact image).

P
A

R
T

 III
P

A
R

T
 III

Gray Hat Hacking: The Ethical Hacker’s Handbook

378

All-In-One / Gray Hat Hacking: The Ethical Hacker’s Handbook
Chapter 18

Note that the getName() function is labeled “suspicious ++.” Double-click the
getName() function to get the following window:

In this image, the left window shows the patched function and the right window shows
the unpatched function. The unpatched block uses the gets() function, which provides
no bounds checking. The patched block uses the fgets() function, which requires a size
argument to help prevent buffer overflows. The patched disassembly is shown here:

mov eax, ds:stdin@@GLIBC_2_0
mov [esp+38h+var_30], eax
mov [esp+38h+var_34], 14h
lea eax, [ebp+var_20]
mov [esp+38h+var_38], eax
call _fgets

There were a couple of additional blocks of code within the two functions, but they
are white and include no changed code. They are simply the stack-smashing protector
code, which validates stack canaries, followed by the function epilog. At this point, you
have completed the lab. Moving forward, we will look at real-world diffs.

Chapter 18: Next-Generation Patch Exploitation

379

All-In-One / Gray Hat Hacking: The Ethical Hacker’s Handbook
Chapter 18

Patch Management Process
Each vendor has its own process for distributing patches, including Oracle, Microsoft,
and Apple. Some vendors have a set schedule as to when patches are released, whereas
others have no set schedule. Having an ongoing patch release cycle, such as that used by
Microsoft, allows for those responsible for managing a large number of systems to plan
accordingly. Out-of-band patches can be problematic for organizations because there
may not be resources readily available to roll out the updates. We will focus primarily
on the Microsoft patch management process because it is a mature process that is often
targeted for the purpose of diffing to discover vulnerabilities for profit.

Microsoft Patch Tuesday
The second Tuesday of each month is Microsoft’s monthly patch cycle, with the occa-
sional out-of-band patch due to a critical update. The process significantly changed with
the introduction of Windows 10 cumulative updates, taking effect on Windows 8 as of
October 2016, as well as a change in the way patches are downloaded. Up until April
2017, a summary and security patches for each update could be found at https://technet
.microsoft.com/en-us/security/bulletin. Starting in April 2017, patches are acquired from
the Microsoft Security TechCenter site at https://www.catalog.update.microsoft.com/
Home.aspx, with summary information at https://msrc.microsoft.com/update-guide/
releaseNote/. Patches are commonly obtained by using the Windows Update tool from
the Windows Control Panel or managed centrally by a product such as Windows Server
Update Services (WSUS) or Windows Update for Business (WUB). When patches are
desired for diffing, they can be obtained from the aforementioned TechNet link, using the
search syntax of (YYYY-MM Build_Number Architecture), such as “2021-07 21H1 x64.”

Each patch bulletin is linked to more information about the update. Some updates are
the result of a publicly discovered vulnerability, whereas the majority are through some
form of coordinated private disclosure. The following link lists the CVE numbers associ-
ated with the patched updates: https://msrc.microsoft.com/update-guide/vulnerability.

P
A

R
T

 III
P

A
R

T
 III

Gray Hat Hacking: The Ethical Hacker’s Handbook

380

All-In-One / Gray Hat Hacking: The Ethical Hacker’s Handbook
Chapter 18

When you click the associated links, only limited information is provided about the
vulnerability. The more information provided, the more likely someone is quickly able
to locate the patched code and produce a working exploit. Depending on the size of the
update and the complexity of the vulnerability, the discovery of the patched code alone
can be challenging. Often, a vulnerable condition is only theoretical, or can only be
triggered under very specific conditions. This can increase the difficulty in determining
the root cause and producing proof-of-concept code that successfully triggers the bug.
Once the root cause is determined and the vulnerable code is reached and available for
analysis in a debugger, it must be determined how difficult it will be to gain code execu-
tion, if applicable.

Obtaining and Extracting Microsoft Patches
Let’s look at an example of acquiring and extracting a cumulative update for Windows
10. When we look at the prior list of CVEs for July 2021, we see that CVE-2021-34527
says, “Windows Print Spooler Remote Code Execution Vulnerability.” This is the vul-
nerability named “PrintNightmare,” as can be seen in the Microsoft announcement at
https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-34527. There were
various patches released between June 2021 and August 2021 and beyond. For this walk-
through, we will download the June 2021 and July 2021 cumulative update for Windows
10 21H1 x64. Our goal is to locate the vulnerable and patched file associated with Print-
Nightmare and get some initial information as to how it was corrected.

We must first go to https://www.catalog.update.microsoft.com/Home.aspx and
enter the search criteria of 2021-06 21H1 x64 cumulative. When doing this we get
the following results:

Chapter 18: Next-Generation Patch Exploitation

381

All-In-One / Gray Hat Hacking: The Ethical Hacker’s Handbook
Chapter 18

We will download the file “2021-06 Cumulative Update for Windows 10 Version
21H1 for x64-based Systems (KB5004476).” Next, we will change the search criteria to
2021-07 21H1 x64 cumulative. The results are shown next.

We will download the file “2021-07 Cumulative Update for Windows 10 Version 21H1
for x64-based Systems (KB5004237).” We now have both cumulative updates, which
should include the files needed to look at CVE-2021-34527, but they must be extracted.

Patches can be manually extracted using the expand tool from Microsoft, included on
most versions of Windows. The tool expands files from a compressed format, such as a
cabinet file or Microsoft Standalone Update package (MSU). When the -F: argument is
used to specify a file, wildcards are supported with the * character. The command would
look something like expand.exe -F:* <file to extract> <destination>. When you run
this command against a downloaded cumulative update, a Patch Storage File (PSF) with
a .cab extension is quickly extracted. The same expand command must be applied to this
file in order to extract the contents. This will take some time to run (likely more than
10 minutes), as there are typically tens of thousands of folders and files. For the sake of
brevity, we will not dive into the associated internal structure and hierarchy associated
with patch file internals, except for those necessary to quickly get into patch diffing. To
help speed things up, we will use the PatchExtract tool from Greg Linares, which makes
use of the expand tool. An updated version from Jaime Geiger is listed in the “For
Further Reading” section and is the version used in this chapter.

The PatchExtract tool is a PowerShell script that both extracts the patch file contents
and neatly organizes the files into various folders. In order to use the tool, it is a good idea
to create a destination folder as to where you want the extracted files to be placed. For our
purposes, we will name one folder “2021-06” and a second folder “2021-07.” We will
extract the contents of the June 2021 update to the “2021-06” folder and the contents
of the July 2021 update to the “2021-07” folder. With the June 2021 .msu cumulative
update file copied into the “2021-06” folder, we run the following command (entered all
on one line) using a PowerShell ISE session:

PS C:\grayhat\Chapter 18> ..\PatchExtract.ps1 -PATCH .\windows10.0-kb5004296-
x64_1d54ad8c53ce045b7ad48b0cdb05d618c06198d9.msu -PATH . | Out-Null

P
A

R
T

 III
P

A
R

T
 III

Gray Hat Hacking: The Ethical Hacker’s Handbook

382

All-In-One / Gray Hat Hacking: The Ethical Hacker’s Handbook
Chapter 18

After this command was executed, it took about 20 minutes for the files to be extracted.
There were also a few PowerShell messages about names already existing, but nothing
preventing the patch from being fully extracted. Upon completion, we are left with var-
ious folders, including JUNK, MSIL, PATCH, WOW64, x64, and x86. The JUNK
folder contains files that we are not interested in, such as manifest files and security cata-
log files. The PATCH folder contains the larger nested cabinet files we just extracted. The
MSIL, WOW64, x64, and x86 folders contain the bulk of the platform data and patch
files in which we are interested.

Inside the x64 folder are over 2,900 subfolders, all with different descriptive names,
as seen here:

Inside each of these folders are typically two subfolders, called “f” and “r,” which stand
for forward and reverse, respectively. Another subfolder name you may come across is
“n,” which stands for null. These folders include the delta patch files. The “r” folder
contains the reverse differential files, the “f ” folder contains the forward differential files,
and the “n” folder contains new files to be added. It used to be the case where the patch
included the entire file to be replaced, such as a DLL or driver. Microsoft changed to the
delta format in which the reverse differential file takes the updated file, once installed,
back to the Release To Manufacturing (RTM) version, and the forward differential takes

Chapter 18: Next-Generation Patch Exploitation

383

All-In-One / Gray Hat Hacking: The Ethical Hacker’s Handbook
Chapter 18

the file from RTM to where it needs to be for the current update.2 If a new file is added
to the system on Patch Tuesday, via the null folder, it could be considered the RTM
version. Once that file is patched during a subsequent Patch Tuesday update, a forward
differential can be applied to make it current. This update will also come with a reverse
differential file that can be applied to take the file back to the RTM version so that a
future forward differential can be applied to continue to make it current.

As mentioned, once upon a time, Microsoft patches would include the entire files to
replace the ones being patched; however, if you take a look at the patch files within the
f and r folders, you will quickly notice that the file size of the supposed DLLs or drivers
is far too small to be the entire file. A number of years ago, Microsoft created a set of
patch delta APIs. The current API is the MSDELTA API.3 It includes a set of functions
to perform actions, such as applying a patch delta. Jaime Geiger created a script called
“delta_patch.py” to utilize the API in order to apply reverse and forward deltas, which we
will use shortly. The delta patch files include a 4-byte CRC32 checksum at the beginning
of the file, followed by a magic number of PA30.3, 4

Before we move onto applying patch deltas, we need to identify a file related to a
patch in which we are interested. CVE-2021-34527 is related to the “PrintNightmare”
vulnerability. In order to determine which files we are interested in diffing, we need to
understand a bit more about spooling services on Windows. Take a look at the following
image, from Microsoft, which shows both local and remote printer provider components:5

Local Remote

Application

GDI

Printer
Graphics

DLL

Printer
Interface

DLL

EMF
Print

Processor
DLL

Print Queue
Management

API

PRINTER

winspool.drv (Client)

Yes

Yes

No

No

spoolsv.exe (Server)

spoolss.dll (Router)

Is Output
Format
EMF?

Is Output
Format
EMF?

Windows NT/2000
Client System

Application

Other Provider
DLL

Kernel-Mode
Port Driver Stack

GDI

GDI

– or – – or –

Winspool.drv

Spoolsv.exe

Spoolss.dll

RPC

Windows NT/2000
Server System

GDI

Winspool.drv

Spoolsv.exe

Spoolss.dll

Localspl.dll

Kernel-Mode
Port Driver Stack

Other Server

Other Server

Remote Printer

Localspl.dll

Local
Printer

Printer

Printer

Printer

Win32spl.dll

Network Protocol

RPC

Network Protocol

Network Protocol

printui.dll
(Print Folder)

Print Job Creation API

localspl.dll

LOCAL PRINT PROVIDER

Job Scheduling API

Job Scheduler Thread

Language Monitor DLL

Port Monitor DLL

Kernel-Mode Port
Driver Stack

Spool
File

P
A

R
T

 III
P

A
R

T
 III

Gray Hat Hacking: The Ethical Hacker’s Handbook

384

All-In-One / Gray Hat Hacking: The Ethical Hacker’s Handbook
Chapter 18

We can see a few candidates to diff in the images, including winspool.drv, spoolsv.exe,
spools.dll, and localspl.dll. The vulnerability associated with PrintNightmare indicated
the potential for remote code execution (RCE). In the image on the right, we can see an
RPC call to spoolsv.exe. In our preliminary analysis, it was determined that spoolsv.exe,
winspool.drv, and localspl.dll are the most interesting targets. We will start with analyz-
ing spoolsv.exe. Our next step is to apply the patch deltas for the June 2021 and July
2021 updates. We must identify a copy of spoolsv.exe from our Windows 10 WinSxS
folder, apply the associated reverse delta, and then apply the forward delta for each of the
two months. WinSxS is the Windows side-by-side assembly technology. In short, it is a
way for Windows to manage various versions of DLLs and other types of files. Windows
needs a way to replace updated files, while also having a way to revert back to older ver-
sions if an update is uninstalled. The large number of DLLs and system files can become
complex to manage. We will look through the WinSxS folder to find a copy of spoolsv
.exe, and its associated reverse delta patch, in order to take it back to RTM. Take a look
at the following PowerShell command and associated results:

We can see a spoolsv.exe file from May 2021, along with an r folder and an f folder,
which includes the delta patch files. We will create a spoolsv folder in our C:\grayhat\
Chapter 18\ folder and then copy the full spoolsv.exe file, along with the r folder and
its contents. This will allow us to apply the reverse delta patch, followed by using the
forward delta patch from the June 2021 and July 2021 updates to the file, using the
delta_patch.py tool.

PS C:\grayhat\Chapter 18> .\delta_patch.py -i .\spoolsv\spoolsv.exe -o .\
spoolsv.2021-06.exe .\spoolsv\r\spoolsv.exe .\2021-06\x64\printing-spooler-
core_10.0.19041.1052\f\spoolsv.exe
Applied 2 patches successfully
Final hash: kXOpI3uCt6K/gNfXD/ZfCaiQl8sy8EcluGHY+vZRX5o=

PS C:\grayhat\Chapter 18> .\delta_patch.py -i .\spoolsv\spoolsv.exe -o .\
spoolsv.2021-07.exe .\spoolsv\r\spoolsv.exe .\2021-07\x64\printing-spooler-
core_10.0.19041.1083\f\spoolsv.exe
Applied 2 patches successfully
Final hash: 0+G8zsSJmi5O1RIHgwYYSA9qNUSc+lFjgcCxryrt7Dg=

Chapter 18: Next-Generation Patch Exploitation

385

All-In-One / Gray Hat Hacking: The Ethical Hacker’s Handbook
Chapter 18

As you can see, the reverse and forward delta patches were applied successfully. We
now have the spoolsv.exe file versions for both June and July. We will use the BinDiff
plug-in for IDA Pro to compare the differences between the two versions. To do so, we
will need to perform the following actions:

• Have IDA perform its auto-analysis against both files.
• Load the June version into IDA and press ctrl-6 to bring up the BinDiff menu.
• Perform the diff and analyze the results.

In the results we can see changes to five functions, the removal of four functions
and two imports, and the addition of two new functions in the patched version
of spoolsv.exe, as seen in the Secondary Unmatched tab. The function name
YRestrictDriverInstallationToAdministrators sounds like an obvious function of
interest. Let’s perform a visual diff of the function RpcAddPrinterDriverEx.

P
A

R
T

 III
P

A
R

T
 III

Gray Hat Hacking: The Ethical Hacker’s Handbook

386

All-In-One / Gray Hat Hacking: The Ethical Hacker’s Handbook
Chapter 18

We can see a large number of differences between the versions of the function. When
zooming into the area towards the top center, we see the following:

On the primary (unpatched) side is a call to RunningAsLUA, which is
removed from the secondary (patched) side. There is a new call to the function
YRestrictDriverInstallationToAdministrators in the patched version. When exam-
ining the cross-references to this new function, we see two calls. One call is from
RpcAddPrinterDriver, and the other is from RpcAddPrinterDriverEx. Both of these
functions were identified as having changes. The following illustration shows the block
of code within RpcAddPrinterDriverEx where there is a call to YIsElevationRequired
and YImpersonateClient.

When looking at each of these functions, we see a unique registry key being accessed,
as shown here:

Chapter 18: Next-Generation Patch Exploitation

387

All-In-One / Gray Hat Hacking: The Ethical Hacker’s Handbook
Chapter 18

The YIsElevationRequired function checks a key called NoWarning-
NoElevationOnInstall, and YRestrictDriverInstallationToAdministrators checks a key
called RestrictDriverInstallationToAdministrators. The return from YIsElevationRequired
is recorded in r14 and the return from RestrictDriverInstallationToAdministrators is
recorded in r15. Let’s take a look at the pseudocode of the RpcAddPrinterDriverEx func-
tion to get a better understanding of the flow. We are using the Hex-Rays decompiler, but
you could also use Ghidra or another tool.

Line 4 shows us that v6 represents r14, which will hold the return from
YIsElevationRequired on line 21. Line 5 shows us that v7 represents r15, which will
hold the return from YRestrictDriverInstallationToAdministrators on line 22. Line
26 sets v10 (esi) if the user is an administrator. The condition in line 45 says that if v6
is set (elevation required) and not v10 (not an administrator), then we and variable a3
with 0x8000, which is 1000000000000000 in binary. This unsets a flag in the 15th bit
position of a3 (edi) to a 0. The condition in line 48 then says if v7 is not set (installation
not restricted to administrators) or v10 is set (is an administrator), call the function
YAddPrinterDriverEx, passing a3 (user-controllable flags) as one of the arguments.

P
A

R
T

 III
P

A
R

T
 III

Gray Hat Hacking: The Ethical Hacker’s Handbook

388

All-In-One / Gray Hat Hacking: The Ethical Hacker’s Handbook
Chapter 18

If you recall, the image from Microsoft for the high-level printer provider compo-
nents shows an RPC call to the remote spoolsv.exe process. In turn, execution then goes
through localspl.dll prior to going into Kernel mode for communication with the actual
printer. When looking at the Export Address Table (EAT) of localspl.dll, we can see the
function SplAddPrinterDriverEx. It has been decompiled, as shown here:

Take a look at lines 28–33. Variable a4 is the same as variable a3 from the
prior pseudocode dump with RpcAddPrinterDriverEx, containing flags. We
can control this value, which in the unpatched version of spoolsv.exe lacks the
checks to the associated registry keys (NoWarningNoElevationOnInstall and
RestrictDriverInstallationToAdministrators). We can effectively bypass the call to
ValidateObjectAccess and go straight to InternalAddPrinterDriverEx. Line 28 sets
v12 to 0. Line 29 says if the 15th bit position in a4 is not set, then set v12 to equal that
of a7, which likely changes the value of v12 from being a 0. In line 31, if v12 is set (not
zero), then call ValidateObjectAccess and check to see if the sedebugprivilege right is
set. If we can make it so the 15th bit position in a4 is on, then in line 29 we will not go
into the block and instead call InternalAddPrinterDriverEx. This effectively allows an
attacker to bypass the check and install a driver, allowing for code execution as the user
NT AUTHORITY\SYSTEM. There were additional findings and fixes still occurring at
the time of this writing; however, this is one of the primary exploitable bugs.

Summary
This chapter introduced binary diffing and the various tools available to help speed up
your analysis. We looked at a simple application proof-of-concept example, and then we
looked at a real-world patch to locate the code changes, validate our assumptions, and

Chapter 18: Next-Generation Patch Exploitation

389

All-In-One / Gray Hat Hacking: The Ethical Hacker’s Handbook
Chapter 18

verify the fix. This is an acquired skill that ties in closely with your experience debugging
and reading disassembled code. The more you do it, the better you will be at identifying
code changes and potential patched vulnerabilities. It is sometimes easier to start with
earlier versions or builds of Windows, as well as a 32-bit version instead of 64-bit version,
as the disassembly is often easier to read. Many bugs span a large number of versions of
Windows. It is not unheard of for Microsoft to also sneak in silent code changes with
another patch. This sometimes differs between versions of Windows, where diffing one
version of Windows may yield more information than diffing another version.

For Further Reading
BinDiff Manual (Zynamics) www.zynamics.com/bindiff/manual/
“DarunGrim: A Patch Analysis and Binary Diffing Tool www.darungrim.org
PatchExtract gist.github.com/wumb0/306f97dc8376c6f53b9f9865f60b4fb5
delta_patch gist.github.com/wumb0/9542469e3915953f7ae02d63998d2553
“Feedback-Driven Binary Code Diversification” (Bart Coppens, Bjorn De Sutter, and
Jonas Maebe) users.elis.ugent.be/~brdsutte/research/publications/2013TACOcoppens
.pdf
“Fight against 1-day exploits: Diffing Binaries vs. Anti-Diffing Binaries” (Jeong Wook
Oh) www.blackhat.com/presentations/bh-usa-09/OH/BHUSA09-Oh-DiffingBinaries-
PAPER.pdf
patchdiff2 (Nicolas Pouvesle) code.google.com/p/patchdiff2/
Back2TheFuture github.com/SafeBreach-Labs/Back2TheFuture
BLUEHEXAGON threat advisory bluehexagon.ai/blog/threat-advisory-cve-2021-1675-
aka-printnightmare/

References
1. Zynamics, BinDiff Manual, 2017, https://www.zynamics.com/bindiff/manual/.
2. Jaime Ondrusek et al. “Windows Updates Using Forward and Reverse Differentials,”

Microsoft 365, Microsoft, 2020, https://docs.microsoft.com/en-us/windows/
deployment/update/psfxwhitepaper.

3. Jaime Geiger. “Extracting and Diffing Windows Patches in 2020.” wumb0in Full
Atom, 2020, https://wumb0.in/extracting-and-diffing-ms-patches-in-2020.html.

4. Microsoft. “Us20070260653a1: Inter-Delta Dependent Containers for Content
Delivery.” Google Patents, Google, 2006, https://patents.google.com/patent/
US20070260653.

5. Barry Golden and Amy Viviano. “Local Print Provider.” Microsoft Docs,
Microsoft, 2017, https://docs.microsoft.com/en-us/windows-hardware/
drivers/print/local-print-provider.

P
A

R
T

 III
P

A
R

T
 III

	00-FM
	01-ch01
	02-ch02
	_Hlk77687012

	03-ch03
	04-ch04
	05-ch05
	06-ch06
	07-ch07
	_GoBack

	08-ch08
	09-ch09
	10-ch10
	11-ch11
	_Hlk87267904
	_Hlk87267927
	_Hlk87267942
	_Hlk87268005
	_Hlk87268013

	12-ch12
	13-ch13
	14-ch14
	_GoBack
	_Hlk87267904
	_Hlk87267915
	_Hlk87267927
	_Hlk87267942
	_Hlk87267960

	15-ch15
	16-ch16
	17-ch17
	18-ch18
	19-ch19
	20-ch20
	21-ch21
	22-ch22
	23-ch23
	_Hlk77855506
	_heading=h.gjdgxs

	24-ch24
	_Hlk80273834
	_Hlk77855506
	_heading=h.2et92p0
	_heading=h.1fob9te
	_heading=h.gma69hgkqc2x
	_heading=h.3znysh7
	_heading=h.3dy6vkm
	_heading=h.1t3h5sf
	_heading=h.4d34og8
	_heading=h.2s8eyo1
	_heading=h.17dp8vu
	_heading=h.3rdcrjn
	_heading=h.26in1rg
	_heading=h.lnxbz9
	_heading=h.35nkun2
	_heading=h.1ksv4uv
	_heading=h.44sinio
	_GoBack

	25-ch25
	_heading=h.30j0zll
	_heading=h.1fob9te
	_heading=h.tyjcwt
	_heading=h.3dy6vkm
	_heading=h.1t3h5sf
	_heading=h.4d34og8
	_heading=h.2s8eyo1
	_heading=h.17dp8vu
	_heading=h.3rdcrjn
	_heading=h.26in1rg
	_heading=h.lnxbz9
	_heading=h.35nkun2
	_heading=h.1ksv4uv
	_heading=h.44sinio
	_heading=h.2jxsxqh
	_heading=h.z337ya
	_heading=h.3j2qqm3
	_heading=h.1y810tw
	_heading=h.gjdgxs

	26-ch26
	_Hlk77855506
	_heading=h.gjdgxs
	_heading=h.30j0zll
	_heading=h.1fob9te
	_Hlk82439260
	_Hlk82438852
	_Hlk82439531
	_Hlk82439852
	_heading=h.3znysh7
	_heading=h.2et92p0
	_Hlk82440275
	_heading=h.tyjcwt

	27-ch27
	OLE_LINK1
	OLE_LINK2

	28-ch28
	_GoBack

	29-ch29
	30-ch30
	31-Index
	_GoBack

